Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
J Matern Fetal Neonatal Med ; 36(1): 2193284, 2023 Dec.
Article in English | MEDLINE | ID: covidwho-2253494

ABSTRACT

OBJECTIVE: This study aimed to evaluate the effects of the home quarantine on pregnancy outcomes of gestational diabetes mellitus (GDM) patients during the COVID-19 outbreak. METHODS: The complete electronic medical records of patients with GDM with home quarantine history were collected and classified into the home quarantine group from 24 February 2020 to 24 November 2020. The same period of patients with GDM without home quarantine history were included in the control group from 2018 to 2019. The pregnant outcomes of the home quarantine and control groups were systematically compared, such as neonatal weight, head circumference, body length, one-minute Apgar score, fetal macrosomia, and pre-term delivery. RESULTS: A total of 1358 patients with GDM were included in the analysis, including 484 in 2018, 468 in 2019, and 406 in 2020. Patients with GDM with home quarantine in 2020 had higher glycemic levels and adverse pregnancy outcomes than in 2018 and 2019, including higher cesarean section rates, lower Apgar scores, and higher incidence of macrosomia and umbilical cord around the neck. More importantly, the second trimester of home quarantine had brought a broader impact on pregnant women and fetuses. CONCLUSION: Home quarantine has aggravated the condition of GDM pregnant women and brought more adverse pregnancy outcomes during the COVID-19 outbreak. Therefore, we suggested governments and hospitals strengthen lifestyle guidance, glucose management, and antenatal care for patients with GDM with home quarantine during public health emergencies.


Subject(s)
COVID-19 , Diabetes, Gestational , Infant, Newborn , Pregnancy , Humans , Female , Diabetes, Gestational/epidemiology , Pregnancy Outcome/epidemiology , Cesarean Section , Retrospective Studies , Quarantine , COVID-19/epidemiology , COVID-19/prevention & control , Fetal Macrosomia/epidemiology
3.
Front Immunol ; 13: 956794, 2022.
Article in English | MEDLINE | ID: covidwho-2032775

ABSTRACT

DEAD-box RNA helicase 21 (DDX21), also known as RHII/Gu, is an ATP-dependent RNA helicase. In addition to playing a vital role in regulating cellular RNA splicing, transcription, and translation, accumulated evidence has suggested that DDX21 is also involved in the regulation of innate immunity. However, whether DDX21 induces or antagonizes type I interferon (IFN-I) production has not been clear and most studies have been performed through ectopic overexpression or RNA interference-mediated knockdown. In this study, we generated DDX21 knockout cell lines and found that knockout of DDX21 enhanced Sendai virus (SeV)-induced IFN-ß production and IFN-stimulated gene (ISG) expression, suggesting that DDX21 is a negative regulator of IFN-ß. Mechanistically, DDX21 competes with retinoic acid-inducible gene I (RIG-I) for binding to double-stranded RNA (dsRNA), thereby attenuating RIG-I-mediated IFN-ß production. We also identified that the 217-784 amino acid region of DDX21 is essential for binding dsRNA and associated with its ability to antagonize IFN production. Taken together, our results clearly demonstrated that DDX21 negatively regulates IFN-ß production and functions to maintain immune homeostasis.


Subject(s)
Interferon-beta , RNA, Double-Stranded , DEAD-box RNA Helicases , Immunity, Innate , Sendai virus
4.
Comput Struct Biotechnol J ; 20: 3409-3421, 2022.
Article in English | MEDLINE | ID: covidwho-1926353

ABSTRACT

Equine arteritis virus (EAV) and porcine reproductive and respiratory syndrome virus (PRRSV) represent two members of the family Arteriviridae and pose a major threat to the equine- and swine-breeding industries throughout the world. Previously, we and others demonstrated that PRRSV 3C-like protease (3CLpro) had very high glutamic acid (Glu)-specificity at the P1 position (P1-Glu). Comparably, EAV 3CLpro exhibited recognition of both Glu and glutamine (Gln) at the P1 position. However, the underlying mechanisms of the P1 substrate specificity shift of arterivirus 3CLpro remain unclear. We systematically screened the specific amino acids in the S1 subsite of arterivirus 3CLpro using a cyclized luciferase-based biosensor and identified Gly116, His133 and Ser136 (using PRRSV 3CLpro numbering) are important for recognition of P1-Glu, whereas Ser136 is nonessential for recognition of P1-Gln. Molecular dynamics simulations and biochemical experiments highlighted that the PRRSV 3CLpro and EAV 3CLpro formed distinct S1 subsites for the P1 substrate specificity switch. Mechanistically, a specific intermolecular salt bridge between PRRSV 3CLpro and substrate P1-Glu (Lys138/P1-Glu) are invaluable for high Glu-specificity at the P1 position, and the exchange of K138T (salt bridge interruption, from PRRSV to EAV) shifted the specificity of PRRSV 3CLpro toward P1-Gln. In turn, the T139K exchange of EAV 3CLpro showed a noticeable shift in substrate specificity, such that substrates containing P1-Glu are likely to be recognized more efficiently. These findings identify an evolutionarily accessible mechanism for disrupting or reorganizing salt bridge with only a single mutation of arterivirus 3CLpro to trigger a substrate specificity switch.

5.
Virology ; 571: 12-20, 2022 06.
Article in English | MEDLINE | ID: covidwho-1799672

ABSTRACT

An epidemic owing to Norovirus (NoV) has recently been occurring worldwide. Severe cases of NoV can lead to patient death, resulting in significant public health problems. In the early stages of infection, antagonizing the production of host interferon (IFN) is an important strategy for viruses to establish infection. However, the relationship between NoV and interferon and its mechanism remains unclear. In this study, the 3C-like protease encoded by NoV was found to effectively suppress Sendai virus (SEV)-mediated IFN-ß production by cleaving the NF-κB essential modulator (NEMO). Glutamine 205 is the site of NoV3CLpro-mediated cleavage of NEMO and this cleavage suppresses the ability of NEMO to activate downstream IFN production. These findings demonstrate that NoV3CLpro-induced cleavage limits NEMO to the activation of type I IFN signaling. In summary, our findings indicate that NoV3CLpro is a new interferon antagonist, and enhances our understanding of the escape of innate immunity mediated by NoV3CLpro.


Subject(s)
Norovirus , Peptide Hydrolases , Antiviral Agents , Cysteine Endopeptidases , Humans , Interferon-beta/genetics , Interferons/genetics , Norovirus/genetics
6.
J Virol ; 96(8): e0003722, 2022 04 27.
Article in English | MEDLINE | ID: covidwho-1779311

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to pose an enormous threat to economic activity and public health worldwide. Previous studies have shown that the nonstructural protein 5 (nsp5, also called 3C-like protease) of alpha- and deltacoronaviruses cleaves Q231 of the NF-κB essential modulator (NEMO), a key kinase in the RIG-I-like receptor pathway, to inhibit type I interferon (IFN) production. In this study, we found that both SARS-CoV-2 nsp5 and SARS-CoV nsp5 cleaved NEMO at multiple sites (E152, Q205, and Q231). Notably, SARS-CoV-2 nsp5 exhibited a stronger ability to cleave NEMO than SARS-CoV nsp5. Sequence and structural alignments suggested that an S/A polymorphism at position 46 of nsp5 in SARS-CoV versus SARS-CoV-2 may be responsible for this difference. Mutagenesis experiments showed that SARS-CoV-2 nsp5 (S46A) exhibited poorer cleavage of NEMO than SARS-CoV-2 nsp5 wild type (WT), while SARS-CoV nsp5 (A46S) showed enhanced NEMO cleavage compared with the WT protein. Purified recombinant SARS-CoV-2 nsp5 WT and SARS-CoV nsp5 (A46S) proteins exhibited higher hydrolysis efficiencies than SARS-CoV-2 nsp5 (S46A) and SARS-CoV nsp5 WT proteins in vitro. Furthermore, SARS-CoV-2 nsp5 exhibited stronger inhibition of Sendai virus (SEV)-induced interferon beta (IFN-ß) production than SARS-CoV-2 nsp5 (S46A), while introduction of the A46S substitution in SARS-CoV nsp5 enhanced suppression of SEV-induced IFN-ß production. Taken together, these data show that S46 is associated with the catalytic activity and IFN antagonism by SARS-CoV-2 nsp5. IMPORTANCE The nsp5-encoded 3C-like protease is the main coronavirus protease, playing a vital role in viral replication and immune evasion by cleaving viral polyproteins and host immune-related molecules. We showed that both SARS-CoV-2 nsp5 and SARS-CoV nsp5 cleave the NEMO at multiple sites (E152, Q205, and Q231). This specificity differs from NEMO cleavage by alpha- and deltacoronaviruses, demonstrating the distinct substrate recognition of SARS-CoV-2 and SARS-CoV nsp5. Compared with SARS-CoV nsp5, SARS-CoV-2 nsp5 encodes S instead of A at position 46. This substitution is associated with stronger catalytic activity, enhanced cleavage of NEMO, and increased interferon antagonism of SARS-CoV-2 nsp5. These data provide new insights into the pathogenesis and transmission of SARS-CoV-2.


Subject(s)
Coronavirus 3C Proteases , Interferon Type I , SARS-CoV-2 , Severe acute respiratory syndrome-related coronavirus , Antiviral Agents , COVID-19/immunology , COVID-19/virology , Coronavirus 3C Proteases/metabolism , Humans , Immune Evasion/genetics , Interferon Type I/antagonists & inhibitors , Interferon Type I/metabolism , Severe acute respiratory syndrome-related coronavirus/enzymology , Severe acute respiratory syndrome-related coronavirus/genetics , SARS-CoV-2/enzymology , SARS-CoV-2/genetics , Severe Acute Respiratory Syndrome/immunology , Severe Acute Respiratory Syndrome/virology , Virus Replication/genetics
7.
J Virol ; 94(20)2020 09 29.
Article in English | MEDLINE | ID: covidwho-1271852

ABSTRACT

The 3C-like protease (3CLpro) of nidovirus plays an important role in viral replication and manipulation of host antiviral innate immunity, which makes it an ideal antiviral target. Here, we characterized that porcine torovirus (PToV; family Tobaniviridae, order Nidovirales) 3CLpro autocatalytically releases itself from the viral precursor protein by self-cleavage. Site-directed mutagenesis suggested that PToV 3CLpro, as a serine protease, employed His53 and Ser160 as the active-site residues. Interestingly, unlike most nidovirus 3CLpro, the P1 residue plays a less essential role in N-terminal self-cleavage of PToV 3CLpro Substituting either P1 or P4 residue of substrate alone has little discernible effect on N-terminal cleavage. Notably, replacement of the two residues together completely blocks N-terminal cleavage, suggesting that N-terminal self-cleavage of PToV 3CLpro is synergistically affected by both P1 and P4 residues. Using a cyclized luciferase-based biosensor, we systematically scanned the polyproteins for cleavage sites and identified (FXXQ↓A/S) as the main consensus sequences. Subsequent homology modeling and biochemical experiments suggested that the protease formed putative pockets S1 and S4 between the substrate. Indeed, mutants of both predicted S1 (D159A, H174A) and S4 (P62G/L185G) pockets completely lost the ability of cleavage activity of PToV 3CLpro In conclusion, the characterization of self-processing activities and substrate specificities of PToV 3CLpro will offer helpful information for the mechanism of nidovirus 3C-like proteinase's substrate specificities and the rational development of the antinidovirus drugs.IMPORTANCE Currently, the active-site residues and substrate specificities of 3C-like protease (3CLpro) differ among nidoviruses, and the detailed catalytic mechanism remains largely unknown. Here, porcine torovirus (PToV) 3CLpro cleaves 12 sites in the polyproteins, including its N- and C-terminal self-processing sites. Unlike coronaviruses and arteriviruses, PToV 3CLpro employed His53 and Ser160 as the active-site residues that recognize a glutamine (Gln) at the P1 position. Surprisingly, mutations of P1-Gln impaired the C-terminal self-processing but did not affect N-terminal self-processing. The "noncanonical" substrate specificity for its N-terminal self-processing was attributed to the phenylalanine (Phe) residue at the P4 position in the N-terminal site. Furthermore, a double glycine (neutral) substitution at the putative P4-Phe-binding residues (P62G/L185G) abolished the cleavage activity of PToV 3CLpro suggested the potential hydrophobic force between the PToV 3CLpro and P4-Phe side chains.


Subject(s)
Coronavirus 3C Proteases/metabolism , Protein Processing, Post-Translational , Proteolysis , Torovirus Infections/embryology , Torovirus/enzymology , Animals , Coronavirus 3C Proteases/genetics , HEK293 Cells , Humans , Substrate Specificity , Swine , Torovirus/genetics , Torovirus Infections/genetics
8.
J Virol Methods ; 276: 113772, 2020 02.
Article in English | MEDLINE | ID: covidwho-829838

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) is a highly pathogenic enteric coronavirus causing lethal watery diarrhea in suckling piglets. Reverse genetics is a valuable tool to study the functions of viral genes and to generate vaccine candidates. In this study, a full-length infectious cDNA clone of the highly virulent PEDV strain AJ1102 was assembled in a bacterial artificial chromosome (BAC). The rescued virus (rAJ1102) exhibited similar proliferation characteristics in vitro to the wildtype AJ1102. Using CRISPR/Cas9 technology, a recombinant virus rAJ1102-ΔORF3-EGFP in which the ORF3 gene was replaced with an EGFP gene, was successfully generated, and its proliferation characteristics were compared with the parental rAJ1102. Importantly, it just took one week to construct the recombinant PEDV rAJ1102-ΔORF3-EGFP using this method, providing a more efficient platform for PEDV genome manipulation, which could also be applied to other RNA viruses.


Subject(s)
CRISPR-Cas Systems , Coronavirus Infections/virology , Porcine epidemic diarrhea virus/genetics , Swine Diseases/virology , Animals , Coronavirus Infections/prevention & control , Genome, Viral , Recombination, Genetic , Swine , Viral Vaccines/genetics
9.
J Virol ; 94(15)2020 07 16.
Article in English | MEDLINE | ID: covidwho-382053

ABSTRACT

Porcine deltacoronavirus (PDCoV) is an emerging swine enteropathogenic coronavirus. The nonstructural protein nsp5, also called 3C-like protease, is responsible for processing viral polyprotein precursors in coronavirus (CoV) replication. Previous studies have shown that PDCoV nsp5 cleaves the NF-κB essential modulator and the signal transducer and activator of transcription 2 to disrupt interferon (IFN) production and signaling, respectively. Whether PDCoV nsp5 also cleaves IFN-stimulated genes (ISGs), IFN-induced antiviral effector molecules, remains unclear. In this study, we screened 14 classical ISGs and found that PDCoV nsp5 cleaved the porcine mRNA-decapping enzyme 1a (pDCP1A) through its protease activity. Similar cleavage of endogenous pDCP1A was also observed in PDCoV-infected cells. PDCoV nsp5 cleaved pDCP1A at glutamine 343 (Q343), and the cleaved pDCP1A fragments, pDCP1A1-343 and pDCP1A344-580, were unable to inhibit PDCoV infection. Mutant pDCP1A-Q343A, which resists nsp5-mediated cleavage, exhibited a stronger ability to inhibit PDCoV infection than wild-type pDCP1A. Interestingly, the Q343 cleavage site is highly conserved in DCP1A homologs from other mammalian species. Further analyses demonstrated that nsp5 encoded by seven tested CoVs that can infect human or pig also cleaved pDCP1A and human DCP1A, suggesting that DCP1A may be the common target for cleavage by nsp5 of mammalian CoVs.IMPORTANCE Interferon (IFN)-stimulated gene (ISG) induction through IFN signaling is important to create an antiviral state and usually directly inhibits virus infection. The present study first demonstrated that PDCoV nsp5 can cleave mRNA-decapping enzyme 1a (DCP1A) to attenuate its antiviral activity. Furthermore, cleaving DCP1A is a common characteristic of nsp5 proteins from different coronaviruses (CoVs), which represents a common immune evasion mechanism of CoVs. Previous evidence showed that CoV nsp5 cleaves the NF-κB essential modulator and signal transducer and activator of transcription 2. Taken together, CoV nsp5 is a potent IFN antagonist because it can simultaneously target different aspects of the host IFN system, including IFN production and signaling and effector molecules.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus/drug effects , Coronavirus/metabolism , Cysteine Endopeptidases/metabolism , Endoribonucleases/metabolism , Trans-Activators/metabolism , Viral Nonstructural Proteins/metabolism , Animals , Coronavirus 3C Proteases , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Cysteine Endopeptidases/chemistry , Exoribonucleases/metabolism , HEK293 Cells , Host-Pathogen Interactions , Humans , Immune Evasion , Interferons/metabolism , STAT2 Transcription Factor/metabolism , Signal Transduction , Swine , Swine Diseases/virology
10.
Evol Appl ; 13(9): 2246-2253, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-245726

ABSTRACT

Deltacoronavirus is the last identified Coronaviridae subfamily genus. Differing from other coronavirus (CoV) genera, which mainly infect birds or mammals, deltacoronaviruses (δ-CoVs) reportedly infect both animal types. Recent studies show that a novel δ-CoV, porcine deltacoronavirus (PDCoV), can also infect calves and chickens with the potential to infect humans, raising the possibility of cross-species transmission of δ-CoVs. Here, we explored the deep phylogenetic history and cross-species transmission of δ-CoVs. Virus-host cophylogenetic analyses showed that δ-CoVs have undergone frequent host switches in birds, and sparrows may serve as the unappreciated hubs for avian to mammal transmission. Our molecular clock analyses show that PDCoV possibly originated in Southeast Asia in the 1990s and that the PDCoV cluster shares a common ancestor with Sparrow-CoV of around 1,810. Our findings contribute valuable insights into the diversification, evolution, and interspecies transmission of δ-CoVs and the origin of PDCoV, providing a model for exploring the relationships of δ-CoVs in birds and mammals.

SELECTION OF CITATIONS
SEARCH DETAIL